Hölder continuity for a drift-diffusion equation with pressure
نویسندگان
چکیده
منابع مشابه
Hölder continuity of a parametric variational inequality
In this paper, we study the Hölder continuity of solution mapping to a parametric variational inequality. At first, recalling a real-valued gap function of the problem, we discuss the Lipschitz continuity of the gap function. Then under the strong monotonicity, we establish the Hölder continuity of the single-valued solution mapping for the problem. Finally, we apply these resu...
متن کاملHölder continuity property of the densities of SDEs with singular drift coefficients ∗
We prove that the solution of stochastic differential equations with deterministic diffusion coefficient admits a Hölder continuous density via a condition on the integrability of the Fourier transform of the drift coefficient. In our result, the integrability is an important factor to determine the order of Hölder continuity of the density. Explicit examples and some applications are given.
متن کاملGlobal Multi-armed Bandits with Hölder Continuity
Standard Multi-Armed Bandit (MAB) problems assume that the arms are independent. However, in many application scenarios, the information obtained by playing an arm provides information about the remainder of the arms. Hence, in such applications, this informativeness can and should be exploited to enable faster convergence to the optimal solution. In this paper, formalize a new class of multi-a...
متن کاملHölder Continuity for Optimal Multivalued Mappings
Gangbo and McCann showed that optimal transportation between hypersurfaces generally leads to multivalued optimal maps – bivalent when the target surface is strictly convex. In this paper we quantify Hölder continuity of the bivalent map optimizing average distance squared between arbitrary measures supported on Euclidean spheres.
متن کاملA Drift{diffusion Equation for Charge Transport in Inhomogeneous Materials
From a hopping rate equation for disordered materials we derive a macroscopic drift{di usion equation. For this purposes two space{time scales are simultaneously considered. The microscopic dynamics is characterized by the distribution of localized states and the hopping rate. On the macroscopic space scale both the hopping rate and the disordered material are allowed to be inhomogeneous.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
سال: 2012
ISSN: 0294-1449
DOI: 10.1016/j.anihpc.2012.02.003